Содержание
В последние годы так называемая «альтернативная энергетика» пользуется все большей популярностью. Особое же внимание уделяется использованию излучения солнца. Это вполне закономерно, ведь если создать элемент, который способен преобразовать световые лучи в электричество, можно получить бесплатный неиссякаемый энергоисточник. И такой элемент был создан. Он был назван «солнечным фотоэлементом» или «солнечной батареей», причем как работает солнечная батарея, разобраться довольно просто.
Принцип действия
Главное – не путать фотобатареи с солнечными коллекторами (и те, и другие часто именуют «солнечными панелями»). Если принцип действия коллекторов основан на нагревании теплоносителя, то фотоячейки производят непосредственно электричество. В основе их работы – фотоэлектрический эффект, заключающийся в генерации тока под воздействием солнечных лучей в полупроводниковых материалах.
Полупроводниками же называют вещества, атомы которых либо содержат избыточное количество электронов (n-тип), либо наоборот, испытывают их недостаток (p-тип). А те области структуры p-элементов, где потенциально могли бы находиться электроны, получили название «дырок». Соответственно, фотоэлемент на основе полупроводников состоит из двух слоев с разными типами проводимости.
Как работают солнечные батареи с такой структурой? Следующим образом. Внутренний слой элемента выполняется из p-полупроводника, внешний, гораздо более тонкий, — из n-полупроводника. На границе слоев возникает так называемая «зона p-n перехода», образовавшаяся за счет формирования объемных положительных зарядов в n-слое и отрицательных – в p-слое.
В последние годы так называемая «альтернативная энергетика» пользуется все большей популярностью. Особое же внимание уделяется использованию излучения солнца. Это вполне закономерно, ведь если создать элемент, который способен преобразовать световые лучи в электричество, можно получить бесплатный неиссякаемый энергоисточник. И такой элемент был создан. Он был назван «солнечным фотоэлементом» или «солнечной батареей», причем как работает солнечная батарея, разобраться довольно просто.
Принцип действия
Главное – не путать фотобатареи с солнечными коллекторами (и те, и другие часто именуют «солнечными панелями»). Если принцип действия коллекторов основан на нагревании теплоносителя, то фотоячейки производят непосредственно электричество. В основе их работы – фотоэлектрический эффект, заключающийся в генерации тока под воздействием солнечных лучей в полупроводниковых материалах.
Полупроводниками же называют вещества, атомы которых либо содержат избыточное количество электронов (n-тип), либо наоборот, испытывают их недостаток (p-тип). А те области структуры p-элементов, где потенциально могли бы находиться электроны, получили название «дырок». Соответственно, фотоэлемент на основе полупроводников состоит из двух слоев с разными типами проводимости.
Как работают солнечные батареи с такой структурой? Следующим образом. Внутренний слой элемента выполняется из p-полупроводника, внешний, гораздо более тонкий, — из n-полупроводника. На границе слоев возникает так называемая «зона p-n перехода», образовавшаяся за счет формирования объемных положительных зарядов в n-слое и отрицательных – в p-слое.
При этом в зоне перехода возникает определенный энергетический барьер, вызванный разностью потенциалов зарядов. Он препятствует проникновению основных носителей электрозаряда, но свободно пропускает неосновные, причем в противоположных направлениях. Под действием же солнечного света часть фотонов поглощается поверхностью элемента и генерирует дополнительные «дырочно-электронные» пары. То есть электроны и дырки перемещаются из одного полупроводника в другой, передавая им дополнительный отрицательный или положительный заряд. При этом первоначальная разность потенциалов между n- и p-слоем снижается, а во внешней цепи генерируется электроток.
Особенности структуры
Многие современные фотоячейки имеют только один p-n переход. При этом свободно переходящие носители заряда генерируются лишь теми фотонами, энергия которых либо больше, либо равна ширине «запрещенной зоны» на границе перехода. Это означает, что фотоны с более малым запасом энергии попросту не используются, что в свою очередь заметно снижает эффективность ячейки. Для преодоления этого ограничения были созданы многослойные (чаще – четырехслойные) фотоструктуры.
Они позволяют использовать значительно большую часть солнечного спектра и обладают более высокой производительностью. Причем располагают фотоэлементы таким образом, чтобы лучи попадали сначала на переход с самой широкой запрещенной зоной. При этом поглощаются более «энергоемкие» фотоны, фотоны же с меньшим запасом энергии проходят глубже и стимулируют остальные элементы.
А какие бывают солнечные батареи?
Солнечные элементы, принцип работы которых основан на фотоэффекте, создаются уже давно. Главная трудность при их производстве заключается в подборе материалов, способных генерировать достаточно мощный ток. Первые опыты проводились с селеновыми ячейками, но их эффективность была крайне мала (около 1%). Сейчас в фотоэлементах используется в основном кремний, производительность таких устройств составляет порядка 22%. Кроме того, постоянно разрабатываются новые образцы ячеек (например, с использованием арсенида галлия или индия), имеющих более высокий КПД. Максимальная же эффективность солнечных батарей на сегодняшний день составляет 44,7%.
Но такие элементы очень дороги и пока что производятся только в лабораторных условиях. Широкое же распространение получили ячейки на базе монокристаллического или поликристаллического кремния, а также тонкопленочные элементы. Фотобатареи на монокристаллах стоят дороже, но имеют большую производительность, поликристаллы же более дешевы, но из-за неоднородной структуры менее эффективны. При производстве же тонкопленочных ячеек применяются не кристаллы, а напыленные на гибкую подложку кремниевые слои.