Андрей Смирнов
Время чтения: ~5 мин.
Просмотров: 1 866

Расчет солнечного коллектора для ГВС

Солнечная энергетика – это не только свет, преобразованный в электричество. Это еще и горячая вода, и тепло в доме. Чтобы преобразовать энергию солнечного излучения в тепло, нужны специальные установки – солнечные коллекторы. В период с апреля по октябрь эти установки снабжают дома горячей водой, а в осенне-зимний период совместно с традиционными источниками энергии отапливают помещения.

Владельцам коттеджей, загородных домов использование солнечных коллекторов дает существенную экономию средств, так как горячая вода поступает в дом практически бесплатно. Но для того, чтобы эти установки работали в самом оптимальном режиме, перед тем, как выбрать тип установки, ее месторасположение, необходимо выполнить хотя бы приблизительный, прикидочный расчет солнечного коллектора для ГВС (горячего водоснабжения).

Пример расчета для плоского гелиевого конвертера

Для начала нужно установить, какое количество солнечной энергии попадает на поверхность, установленную перпендикулярно лучам солнца. Известно, что на один квадратный метр поверхности, находящейся за пределами атмосферы, попадает 1367 ватт энергии Солнца.

Проходя через атмосферу, солнечное излучение теряет в мощности от трехсот до пятисот ватт. Поэтому на поверхность Земли в ясную безоблачную погоду в средних широтах на один квадратный метр попадает от 800 до 1000 ватт мощности. Для расчетов принимается среднее значение – 900 ватт. Для упрощения расчетов в качестве модели используется условный солнечный конвертер площадью в один квадратный метр.

Схема тепловых потерь
Схема тепловых потерь плоского солнечного коллектора

Модель коллектора, принятая для расчетов, представляет собой установку, рабочая поверхность которой защищена специальным закаленным противоударным стеклом с антибликовым покрытием. Абсорбер покрыт жаропрочной селективной черной краской. Тем самым обеспечивается практически 100% поглощение тепловой энергии. Тыльная сторона коллектора представляет собой слой теплоизоляции толщиной в десять сантиметров. Теплоизоляция чаще всего выполняется на основе минеральной ваты. Чтобы рассчитать потери тепла, неизбежно возникающие на теневой стороне, необходимо знать коэффициент теплопроводности минеральной ваты. Для легкой минеральной ваты этот коэффициент составляет 0.045.

Для расчета предполагается, что разница температур на лицевой и тыльной сторонах теплоизоляции составляет до 50°. Следовательно, при толщине теплоизоляции десять сантиметров потери тепла составят:

0.045:0.1×50=22.5 Вт

Примерно такие же потери тепла возможны с торцевых поверхностей коллектора и от труб. Таким образом, суммарные потери тепла составят 45 ватт. Для расчета необходимо внести корректировочные поправки на возможную облачность, загрязнение стекла коллектора, налипание посторонних предметов (например, листьев с деревьев). Поэтому в расчете следует принять нижнюю границу значения мощности солнечной энергии, приходящейся на один квадратный метр — 800 ватт на один квадратный метр. В качестве теплоносителя в плоских солнечных конвертерах используется вода. Чтобы нагреть один литр воды на один градус, необходимо затратить энергию в 4200 джоулей, что соответствует мощности в 1.16 ватта.

Зная эти величины, можно рассчитать то количество воды, которое будет нагрето в течение одного часа в условном солнечном коллекторе с рабочей площадью в один квадратный метр:

800 : 1.16 = 689.65

То есть за один час гелиевый коллектор площадью в один квадратный метр сможет нагреть на один градус почти 700 литров воды. Из этого расчета следует, что если необходимо нагревать воду на два, три, десять градусов, то расходуемую мощность необходимо соответственно увеличивать.

800 : (1.16 × 10) = 68.96

Следовательно, чтобы в течение часа нагреть воду на десять градусов, через условный солнечный коллектор нужно пропустить не более 69 литров воды (вес одного литра воды равен одному килограмму). Согласно санитарным правилам и нормам (СанПиН), принятым в 2009 году, температура горячей воды, подаваемой в дома, должна находиться в пределах от +60°С до +75°С.

Как показывает практика, для поддержания комфортных условий среды обитания на одного человека требуется в среднем примерно 50 литров горячей воды в день. Для расчета количества энергии принимаем это значение и верхнее значение температуры — +75°С. Поскольку холодная вода, поступающая в коллектор, имеет начальную температуру порядка +10°С, мы получаем ту разницу температур, на которую необходимо нагреть воду:

75 – 10 = 65

Коллектор следует расположить таким образом, чтобы угол наклона его примерно соответствовал географической широте местности, а ориентация была бы на юг. Возможны небольшие отклонения на юго-восток или юго-запад.

Для определения количества тепла, необходимого для нагрева 50 литров воды на 65°, применима формула:

W = Q × V × Tp = 1,16 × 50 ×65 = 3770 (ватт энергии)

Теперь остается вычислить площадь гелиевого коллектора. По таблицам метеорологов для данной конкретной местности следует уточнить то количество энергии Солнца, которое получает здесь один квадратный метр поверхности. Для нашего расчета это значение принято 800 ватт. Разделив вычисленное значение W количества энергии на 800 ватт, мы получим искомую площадь коллектора:

3770 : 800 = 4.71 (квадратных метров)

Это значение соответствует значению площади гелиевого коллектора, который обслуживает одного человека. Для нагрева воды для двух, трех или более человек эту площадь следует увеличить в соответствующее число раз. При стандартных размерах рабочей площади в 2.0 м² — 2.2 м² для нагрева воды на семью из трех человек необходимо установить шесть плоских солнечных коллекторов.

Аналогичным образом производится расчет площади и количества гелиевых коллекторов для организации отопления. Единственное, на что нужно будет сделать поправку, так это на объем теплоносителя, так как в данном случае его потребуется больший объем.

Графический метод расчета системы горячего водоснабжения

Поскольку для определения количества оборудования, которое необходимо приобрести для организации солнечного нагрева воды и подачи ее в дом, особая точность не требуется, многие изготовители и поставщики систем горячего водоснабжения разработали собственные методики расчета, воплотив их в простейшие графики.

По таким графикам любой потенциальный покупатель может самостоятельно определить свои потребности в тех или других компонентах системы нагрева воды. Ниже приведен один из таких графиков. Чтобы определиться с составом оборудования, необходимо выполнить несколько последовательных шагов.

Графическое определение состава оборудования
Графическое определение состава оборудования для горячего водоснабжения

  1. Определить количество постоянных потребителей.
  2. Задать примерный объем расходуемой воды.
  3. На основании этих данных определить рекомендуемый объем бойлера.
  4. Задать оптимальную степень замещения суточных потребностей в тепле на энергию солнца.
  5. Выбрать грубо («Север» — «Юг») вашего месторасположения.
  6. Определить предполагаемую ориентацию гелиевых коллекторов.
  7. Задать угол наклона коллекторов по отношению к горизонту.

Выполнив эти действия, вы получите примерный состав оборудования, которое необходимо для удовлетворения ваших потребностей в горячей воде, а именно объем бойлера, количество коллекторов. А уж за вами остается решение, как именно использовать это оборудование – в качестве основной или вспомогательной системы горячего водоснабжения.

Зная состав системы ГВС, можно легко рассчитать стоимость всех компонентов, а также приблизительно рассчитать сроки окупаемости этого оборудования.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации