Содержание
При строительстве загородных домов, домиков на дачных участках, теплиц, различных фермерских построек все чаще стали применяться автономные системы электрообеспечения. Солнечные батареи обеспечивают независимость от общих электрических сетей. Да и в городах в частном секторе нередко можно увидеть на крышах домов солнечные панели домашних электростанций.
Эти панели могут быть с моно- и поликристаллическими кремниевыми структурами, могут быть построены на базе батарей, выполненных по аморфной или микроморфной технологии, могут быть даже использованы солнечные батареи, выполненные по технологии «Moth Eye» («Глаз мотылька»). При этом каждое здание строится таким образом, чтобы солнечные панели были установлены в месте, максимально освещаемом солнцем.
Эффективность современных гелиевых систем в среднем не превышает 18% — 20%. У лучших образцов эффективность может достигать 25%. В 2014 году ученые Австралийского центра UNSW по усовершенствованию фотовольтаики сообщили, что им удалось добиться эффективности солнечных батарей в 40%.
При этом нужно понимать, что измерение величины эффективности производится, когда гелиевая панель освещается солнцем под прямым углом. Если солнечная батарея закреплена стационарно, то в течение дня, когда солнце перемещается по небосводу, период прямого освещения батареи солнцем будет относительно небольшим. И поэтому эффективность даже самых совершенных солнечных панелей будет снижаться.
Для того чтобы минимизировать снижение эффективности гелиевых систем, солнечные панели должны устанавливаться на поворотных модулях, которые позволят в течение всего светового дня ориентировать батареи на солнце. Такое поворотное устройство, на котором закреплена несущая конструкция с одной или несколькими солнечными панелями, называется трекером.
Он предназначен для того, чтобы следить за солнцем, и, в зависимости от его положения, ориентировать на него солнечную панель. Это устройство, в зависимости от исполнения, включает в себя один или два датчика слежения за солнцем, а также поворотный механизм. Трекер должен быть установлен в хорошо освещаемом солнцем месте на земле, на стационарной станине, либо на мачте, которая поднимет трекер на такую высоту, чтобы солнечная батарея всегда была освещена солнцем.
Трекер с четырьмя солнечными панелями на мачте
Даже простейшее поворотное устройство с системой слежения за солнцем позволяет получить максимальный коэффициент полезного действия от гелиевых батарей. Как показали исследования, при отсутствии должной ориентации солнечных панелей на солнце теряется до 35% мощности. Поэтому, чтобы выйти на запланированную мощность в случае неподвижного крепления фотоэлементов, приходится устанавливать большее количество панелей.
Принцип построения систем управления поворотом солнечных батарей
Промышленностью выпускается несколько видов систем управления поворотом солнечных батарей. Это достаточно дорогие (до 100000 рублей) устройства, которые могут управлять положением сразу нескольких гелиевых панелей.
Поскольку солнце в течение дня перемещается не только по горизонтали, но и по вертикали, то эти системы управления отслеживают оба изменения положения и, в соответствии с полученной информацией, выдают команды на поворот панели вокруг горизонтальной или вертикальной осей. В общем случае такая система управления состоит из солнечного датчика, преобразователя (П) сигнала с этого датчика, усилителя (У) сигнала, микроконтроллера (МК), устройства управления двигателем (УУД), самого двигателя и, наконец, непосредственно рамы, на которой крепится гелиевая панель.
Схема управления трекера
Характерно, что для управления поворотом в обеих осях используется одна и та же схема. Различны только датчики положения солнца и двигатели. Простейший датчик положения солнца состоит из двух фотодиодов, разделенных непрозрачной перегородкой.
В зависимости от того, за каким перемещением следит этот датчик, перегородка устанавливается горизонтально или вертикально, но обязательно направлена строго на солнце. Пока оба фотодиода освещаются одинаково, сигналы, поступающие с них, равны. Как только солнце переместится настолько, что один из фотодиодов окажется в тени перегородки, происходит разбаланс сигналов и система управления вырабатывает соответствующую команду на поворот солнечной батареи.
Схема датчика положения солнца
В качестве двигателей для поворотной платформы используются, как правило, шаговые двигатели или реактивно-вентильные двигатели. В таких системах управления датчики слежения установлены на этой же платформе и поворачиваются вместе с нею, обеспечивая тем самым точную ориентацию гелиевой панели на солнце. Для надежной работы датчика необходимо предусмотреть защиту его от загрязнения, налипания снега, затенения оптики случайными предметами.
Существуют системы управления, в которых датчики слежения удалены от несущей поворотной платформы и находятся в месте, защищенном от подобных воздействий. В этом случае сигнал с датчиков поступает на сельсин-передатчик. Ориентируя датчик слежения на солнце, сельсин-передатчик передает управляющее воздействие на сельсин-приемник, который и поворачивает несущую платформу, направляя ее точно на солнце.
Система управления поворотом солнечных панелей на базе часового механизма
Промышленные установки – полностью укомплектованные гелиевые электростанции с двухосными поворотными модулями – достаточно дорогое удовольствие. Например, промышленный трекер UST-AADAT стоит порядка полутора миллионов рублей. Естественное желание всех владельцев солнечных электростанций – повысить выходную мощность, но при этом сократить расходы. В результате появились самодельные устройства, оригинальные по своему решению, в которых используются подручные материалы. И эти устройства вполне успешно управляют ориентацией панелей на солнце.
Один из вариантов такого устройства – система управления ориентацией гелиевых панелей, построенная на базе часового механизма. Для слежения за солнцем вовсе не обязательно использовать светоприемные устройства. Для этого достаточно взять обычные настенные механические часы. Подойдут даже старые ходики. Известно, что за один час солнце проходит по небосводу с востока на запад путь, соответствующий угловому перемещению на 15°. Поскольку для гелиевой панели такое угловое смещение не особенно критично, то достаточно включать поворотный механизм один раз в час.
Слежение за перемещением солнца по часам
Устройство для поворота гелиевой панели вокруг вертикальной оси может выглядеть следующим образом. В циферблате на расстоянии длины минутной стрелки от центра, в месте, соответствующем 12-ти часам, устанавливается неподвижный контакт. Подвижный контакт – на острие минутной стрелки.
Таким образом, каждые 60 минут будет происходить замыкание контактов и включаться двигатель, поворачивающий солнечную панель. Отключение двигателя можно организовать различными способами, например, конечным выключателем или реле времени. Если на циферблате установить еще один неподвижный контакт в месте, соответствующем 6-ти часам, то коррекция положения панели будет производиться через каждые полчаса.
В этом случае устройства отключения двигателя должны быть настроены на поворот несущей платформы на угол 7,5°.
Кроме того, при желании здесь же, на этом механизме, с помощью еще одной контактной группы, но уже на базе часовой стрелки можно собрать схему автоматического возврата солнечной панели в исходное положение. На базе этой же часовой стрелки можно собрать систему управления поворотом панели и вокруг горизонтальной оси. Пока часовая стрелка двигается до 12-ти часов, несущая рама поднимается вслед за солнцем. После 12-ти часов двигатель горизонтальной оси реверсируется, и солнечная панель начинает вращаться в обратном направлении.
Принцип водяных часов в системе управления поворотом солнечных панелей
Эта система была придумана девятнадцатилетней студенткой Иден Фулл из Канады. Она предназначена для управления одноосным трекером. Принцип работы следующий. Вращение производится вокруг горизонтальной оси. Солнечная панель устанавливается в начальное положение таким образом, чтобы солнечные лучи были перпендикулярны плоскости панели.
На одну сторону панели подвешивается емкость с водой, на противоположную сторону подвешивается груз, равновесный с емкостью, наполненной водой. В нижней части емкости проделывается небольшое отверстие, чтобы вода по каплям вытекала из этого сосуда. Размер этого отверстия подбирается экспериментально. По мере вытекания воды сосуд становится легче, и противовес медленно поворачивает раму с панелью.
Трекер на «водяных часах»
Подготовка трекера к работе заключается в том, что в опустевшую емкость заливается вода и солнечная панель устанавливается в исходное положение.
Эти два примера далеко не исчерпывают возможные варианты построения поворотных модулей. При небольшой фантазии можно получить простое, но очень эффективное устройство, которое гарантированно сможет повысить эффективность домашней гелиевой электростанции.