Содержание
- 1
- 2 Где используется солнечная энергия
- 3 Распространение в России
- 4 Об энергии солнца
- 5 Классификация солнечных электростанций по предназначению
- 6 Пути использования солнечного света
- 7 Разновидности солнечных электростанций
- 8 Классификация СЭС по конструктивному решению
- 9 Пригодна ли для обычного дома
- 10 Плюсы и минусы
Возрастающий интерес к данной энергии объясняется ее экономичностью и неиссякаемостью. Солнечные электростанции применяют в частном секторе и на объектах промышленных, чтобы не допустить перебоев с поставкой электроэнергии.
Где используется солнечная энергия
О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.
Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.
Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:
- космос и авиация;
- сельское хозяйство;
- обеспечение энергией спортивных и медицинских объектов;
- освещение участков частных домов или городских улиц;
- использование в быту;
- электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.
Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».
Распространение в России
Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:
- Развитие новых технологий, позволившее снизить стоимость оборудования;
- Желание людей иметь независимый источник энергии;
- Чистота производства получаемой энергии («зеленая энергетика»);
- Возобновляемый источник энергии.
По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.
Солнечные электростанции работают в:
- Оренбургской области: «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт; «Переволоцкая», установленной мощностью 5,0 МВт.
- Республике Башкортостан: «Бурибаевская», установленной мощностью 20,0 МВт; «Бугульчанская», установленной мощностью 15,0 МВт.
- Республике Алтай: «Кош-Агачская», установленной мощностью 10,0 МВт; «Усть-Канская», установленной мощностью 5,0 МВт.
- Республике Хакасия: «Абаканская», установленной мощностью 5,2 МВт.
- Белгородской области: «АльтЭнерго», установленной мощностью 0,1 МВт.
- В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
- Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).
В стадии разработки проекта и строительства находятся электростанции:
- В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
- В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
- В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
- В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
- В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
- В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
- В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
- В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
- В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
- В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
- В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
- В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
- В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
- В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
- В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
- В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.
Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт. Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.
Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.
Об энергии солнца
Производство энергии тепловыми электростанциями сопряжено с использованием дорогого топлива. К тому же, работа подобных электростанций солнечных негативно отражается на экологической ситуации всей планеты.
Меньше загрязняет окружающее пространство гидроэлектростанция. Однако, для ее строительства необходимы значительные затраты финансовые, трудовые и временные.
Все больше внимание поэтому приковано к солнечной энергии.
Топливо же для рассматриваемых электростанций бесплатное. Электростанции солнечные, с экологической точки зрения, также являются идеальны.
Решение по установке их принимается часто связано с серьезной изношенностью практически всех подстанций. От случаев отключения электричества солнечная электростанция для дома надежно защитит жилище.
Классификация солнечных электростанций по предназначению
По своему предназначению различают следующие типы станций.
Малые мобильные
Обладают полной автономностью, небольшими размерами и весом, что делает удобным их транспортировку на поясах, в рюкзаках, а также на личных транспортных средствах. К сожалению, плюс компактности компенсируется минусом – малой мощностью. Однако для зарядки небольших электронных устройств или аккумуляторов в дальних походах малых мобильных станций достаточно.
- Мощность: < 500 Вт.
- Масса: < 20 кг.
- Площадь развернутых панелей: < 2 м2.
- Цена: до 40 тыс. руб.
Резервные маломощные СЭС
Автономные с АКБ. Используются преимущественно в роли резервного источника питания при сбоях в работе централизованных электросетей. Могут обеспечить энергией все критически важные электроприборы на протяжении от нескольких часов до суток.
- Мощность: 0,5 – 3,0 кВт.
- Масса: 25 – 150 кг.
- Площадь развернутых панелей: < 25 м2.
- Цена: до 250 тыс. руб. с учетом стоимости установки.
Автономные солнечные электростанции для дома и дачи
Такие электростанции предназначены для полноценного обеспечения энергией жилья среднестатистической семьи. В комплекс оборудования такой станции входят накопительные АКБ. Это позволяет СЭС продолжать бесперебойно работать в темное время суток. Ввиду достаточно высокой стоимости, приобретаются владельцами при невозможности либо нецелесообразности использования централизованных сетей электроэнергии.
- Мощность: 5,0 – 30,0 кВт.
- Площадь развернутых панелей: 25 – 225 м2.
- Цена: около 50 000 руб. за 1 кВт, до 1,5 млн. руб. за 30 кВт.
Сетевые СЭС
Технологически могут работать не только автономно, но и передавать энергию во внешние сети. В странах, где покупка такой электроэнергии допускается у частников по «зеленому тарифу», применяются в основном для заработка. В России подобной практики пока нет, поэтому сетевые СЭС преимущественно строятся крупными предприятиями.
На частном уровне излишки генерации можно использовать для других целей – например, нагрева воды. Мощность и площадь панелей ограничиваются только размерами доступного участка.
Гибридные СЭС
Представляют собой гибрид автономной и сетевой технологии. Предназначены для оптимизации генерации и возможности получать энергию ночью (или при недостаче генерации) – либо от сети, либо от АКБ.
Пути использования солнечного света
Преобразование в электрическую энергию
Путем применения фотоэлектрических элементов
Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.
Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.
Путем применения термоэлектрических генераторов
- Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).
Преобразование в тепловую энергию
Путем использования коллекторов различных типов и конструкций
- Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.
Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.
- Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.
Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.
Разновидности солнечных электростанций
Многие страны мира в течение длительного времени пользуются солнечными электростанциями, способными преобразовывать энергию солнца в электрический ток. Они представляют собой различные виды инженерных сооружений, конструктивно различающихся между собой и работающих по собственным принципам.
Наибольшее распространение получили установки, работающие на основе фотоэлектрических элементов. Их основными компонентами являются солнечные панели, нередко занимающие довольно значительные площади. Они используются не только в производственной сфере, но и в частном секторе, обеспечивая электричеством все домашнее хозяйство. Принцип работы этих устройств основан на прямом преобразовании солнечного света в электрический ток. Наряду с ними используются и другие солнечные электростанции, имеющие свои плюсы и минусы, с помощью которых электричество может производиться в промышленных объемах. В отличие от фотоэлементов, процесс преобразования включает в себя несколько этапов. Вначале энергия Солнца превращается в тепловую и нагревает рабочую жидкость, используемую в качестве теплоносителя. Далее, эта жидкость превращается в пар, поступающий в парогенератор и обеспечивающий вращение вала. Таким образом, получается электроэнергия, вырабатываемая примерно по такой же схеме, как на тепловых или атомных электростанциях.
Принцип работы солнечной электростанции является одинаковым для всех типов данных устройств. Они различаются между собой лишь разновидностями теплоприемников, где концентрируется солнечная энергия. В результате концентрации возникает тепло с температурой 200-1000 градусов, в зависимости от конструкции. Далее в работу включается паровая или газовая турбина, вращающаяся под действием полученного пара.
Излишки тепловой энергии применяются в других производственных процессах или используются в системах отопления.
Каждая солнечная электростанция оборудована следящей системой, обеспечивающей максимальную концентрацию солнечных лучей в течение всего светового дня. Конструктивно типы солнечных электростанций могут быть башенными, тарельчатыми, параболическими, солнечно-вакуумными и другими. Для того чтобы понять, как они функционируют, рассмотрим их более подробно.
Классификация СЭС по конструктивному решению
В настоящее время применяется семь различных инженерных подходов для получения солнечной генерации.
Башенные. Используют отражение лучей системой зеркал, фокусирующееся на теплоприемнике, расположенном на башне. Полученная энергия приводит в движение турбины, превращая излучение в электрический ток.
Тарельчатые и параболические. Принцип действия схож с предыдущим, но приемник и отражатель соединены в единую конструкцию. Такие модули используются нечасто и только в жарких регионах планеты.
Фотоэлектрические. Наиболее распространенный тип солнечных станций, работающий за счет поглощения света полупроводниковыми ячейками. Основу подобных СЭС составляют комплекты солнечных батарей, которые размещаются на крыше домов, промышленных зданий или на земле. Превалируют над остальными разновидностями благодаря лучшему функционалу, универсальности, доступности и потенциальным возможностям значительного повышения КПД.
Комбинированные. Соединяют в себе несколько технологий, что в определенных условиях оказывается выгоднее использования каждой из них отдельно.
Аэростатные. Используются на аэростатах и дирижаблях преимущественно метеорологического предназначения. Расположение на высоте около 15-20 км позволяет системе не бояться затенения солнца облаками.
Солнечно-вакуумные. Современная разновидность известных еще в средневековье стеклянных башен, генерирующих энергию за счет разницы температур. Далее мы будем рассматривать только третий тип СЭС на фотоэлектрических батареях, как наиболее перспективный и наиболее популярный.
Пригодна ли для обычного дома
- Для бытового использования гелиоэнергетика — перспективный вид энергетики.
- В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
- Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
- Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.
Плюсы и минусы
К достоинствам солнечной энергетики относятся:
- Экологическая безопасность установок;
- Неисчерпаемость источника энергии в далекой перспективе;
- Низкая себестоимость получаемой энергии;
- Доступность производства энергии;
- Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.
Недостатками являются:
- Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
- Сезонность работы, которую определяет географическое расположение;
- Низкий КПД;
- Высокая стоимость оборудования.
Используемые источники:
alter220.ru, motocarrello.ru, solarsoul.net, electric-220.ru, energo.house